
Introducing Apache Wicket

● Component oriented frameworks difer from classic web
frameworks by building a model of requested page on the server
side and generating the HTML to send back according to this
model. You can think of the model as if it was an “inverse”
JavaScript DOM, meaning that:

1) is built on server-side
2) is built before HTML is sent to client
3) HTML code is generated using this model and not vice versa.

What is Wicket?
● Wicket is a web framework. More precisely is a component-oriented

framework.

● Now we gonna look at a classic example of form to sign in a user
with a username and password.

● Text felds elements are handled in Wicket with class TextField

● Example for a TextField:
Java
new TextField<String>(“username”,Model<String>.of(“Insert username”));
HTML
Username: <input type="text" wicket:id="username"/>

TextField component

* The example code for the two versions of the form is available on GitHub under module
LoginForm and LoginFormRevisited.

https://github.com/bitstorm/Wicket-tutorial-examples
https://github.com/bitstorm/Wicket-tutorial-examples/tree/master/LoginForm
https://github.com/bitstorm/Wicket-tutorial-examples/tree/master/LoginFormRevisited

● With this kind of framework our web pages and their HTML components
(forms, input controls, links, etc...), are pure class instances. Since
pages are class instances they live inside the JVM heap and we can
handle them as we do with any other Java class.

● This approach is very similar to what GUI frameworks (like Swing or
SWT) do with desktop windows and their components. Wicket and the
other component oriented frameworks bring to web development the
same kind of abstraction that GUI frameworks ofer when we build a
desktop application.

● This kind of framework hides the details of the HTTP protocol and
naturally solves the problem of its stateless nature.

Component oriented framework

● Wicket allows us to design our web pages in terms of components and
containers, just like AWT does with desktop windows. Both frameworks
share the same component-based architecture: in AWT we have a
Windows instance which represents the physical windows containing GUI
components (like text felds, radio buttons, drawing areas, etc...), in
Wicket we have a WebPage instance which represents the physical web
page containing HTML components (pictures, buttons, forms, etc…) .

Component oriented framework

● By default this HTML fle must have the same name of the related
page class and must be in the same package:

● In Wicket we can use page classpath to put any kind of resource,
not just HTML (pictures, properties fle, etc...)

Where is the HTML?

● A Wicket application is a standard Java EE web application, hence it
is deployed through a web.xml fle placed inside folder WEB-INF:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Wicket HelloWorld</display-name>
 <filter>
 <filter-name>WizardApplication</filter-name>
 <filter-class>
 org.apache.wicket.protocol.http.WicketFilter
 </filter-class>
 <init-param>
 <param-name>applicationClassName</param-name>
 <param-value>helloWorld.WicketApplication</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>WizardApplication</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

The web.xml file

package helloWorld;

import org.apache.wicket.Page;
import org.apache.wicket.protocol.http.WebApplication;

public class WicketApplication extends WebApplication {

@Override
public Class<? extends Page> getHomePage() {

return HomePage.class;

}

 @Override

Public init(){...}
}

● If we look back at web.xml we can see that we have provided the Wicket
flter with a parameter called applicationClassName. This subclass
represents our web application built with Wicket and it's responsible for
confguring it when the server is starting up.

● Class Application comes with a set of confguration methods that we can
override to customize our application's settings. One of these methods is
getHomePage() that must be overridden as it is declared abstract:

Class WicketApplication

● To map Wicket components to HTML tags we must use attribute wicket:id.
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Insert title here</title>
</head>
<body>

<h1 wicket:id="label"></h1>
</body>
</html>

● In the Wicket page we must add a component with the id equal to the value of the wicket:id
previously set:

package helloWorld;

import org.apache.wicket.markup.html.WebPage;
import org.apache.wicket.markup.html.basic.Label;

public class HomePage extends WebPage {
public HomePage(){

super();
add(new Label("label", "Hello World"));

}
}

HelloWorld.html

HelloWorld.java

HelloWorld page

● Inside <h1> tag you will fnd
the value expressed as
second parameter for Label’s
constructor.

...
<body>

<h1 wicket:id="label">
 </h1>
</body>
...
...

public HomePage(){
super();
add(new Label("label",

 "Hello World"));
}

...

Wicket “Hello world”

● In HTML a link is basically a pointer to another resource that most of the time
is another page. Wicket implements links with component
org.apache.wicket.markup.html.link.Link, but it's more like onClick event
listener than a link:

public class HomePage extends WebPage {
 public HomePage(){
 add(new Link("id"){
 @Override
 public void onClick() {

 }
 });
 }
}

Wicket links

Wicket links

● By default after onClick has been executed, Wicket will send back to the
current page to the client web browser. If we want to navigate to another
page we must use method setResponsePage of class Component:

public class HomePage extends WebPage {
 public HomePage(){
 add(new Link("id"){
 @Override
 public void onClick() {
 //we redirect browser to another page.
 setResponsePage(AnotherPage.class);
 }
 });
 }
}

● Class org.apache.wicket.markup.html.panel.Panel is a special component which
lets us reuse GUI code and HTML markup across diferent pages and diferent
web applications. It shares a common ancestor class with WebPage class, which
is org.apache.wicket.MarkupContainer:

Wicket pages and panels

● Both Panel and WebPage have their own associated markup fle which is used to
render the corresponding component. When a panel is attached to a container, the
content of its markup fle is inserted into its related tag.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
…
</head>
<body>
 <wicket:panel>
 <!-- Your markup goes here -->
 </wicket:panel>
</body>
</html>

● The HTML outside tag <wicket:panel> will be removed during rendering phase. The
space outside this tag can be used by both web developers and web designers to
place some mock HTML to show how the fnal panel should look like.

Wicket panels

● If we want to add header resources to a panel (for example a css), we can use
tag <wicket:head>. It’s content will be included in the <head> tag of the page.
NOTE: resources are added once per panel class to avoid duplicates.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<title>Insert title here</title>
<wicket:head>

<script>...</script>
<wicket:head>
...
</head>
<body>
...
<wicket:panel>
…
</wicket:panel>
...

JavaScript and CSS in panels

Models and forms

● Every component has a related model that can be accessed with method
getModel(). A model can be shared among diferent components.

● With models our components can handle data without knowing
how they are physically persisted or retrieved.

● Up to Wicket 7, a model was a simple interface that just defned a
method to read an object and another one to write it:

public interface IModel
{
 public Object getObject();
 public void setObject(final Object object);
}

Model in Wicket
● A model is a facade for the data object that a component must display

(for example with a label) or set (for example with a textfeld).

● Also Label has a model, but it's “hidden” inside the component and
contains the second parameter of the constructor:

add(new Label("label", "Hello World"));
...

● Wicket comes with a set of models suited for diferent needs. The most
basic one is class Model. We can wrap any object in this model and we can
use factory method of to avoid explicit instantiations:

new Model<String>("label");
…
Model<Persona>.of(new Person(“Mario”, “Rossi”));
…

● Every component has a set of method to access its model and the
object inside it:

Model in Wicket

public interface IModel
{
 public Object getObject();
 default void setObject(final T object) {

 throw new UnsupportedOperationException(
"Override this method to support setObject(Object)");

 }
}

Model in Wicket 8

● With Wicket 8 model interface has changed to take advantage of the
new syntax features introduced in Java 8.

● In short, IModel has become a functional interface and provides a
default empty implementation for setObject:

● In this way models are read-only by default, and can be implemented
with lambda expressions:

add(new Label("timeStamp", () -> LocalDate.now()));

Models and forms

● In Wicket the concept of model is probably the most important topic of
the entire framework and it is strictly related to the usage of its
components.

● In addition, models are also an important element for localization
support (see user guide for more details).

● However, despite their fundamental role, models are not difcult to
understand but the best way to get acquainted with them is to use
them with forms.

● Hence, to continue our introduction to Wicket models, in the next
slides we will introduce Wicket forms a very basic form component,
the TextField.

Forms in Wicket

● Following its component oriented nature, Wicket ofers a Form
component to handle HTML forms.

● Forms are special container for input components (representing text
felds, radio buttons, check boxes, etc...) which are subclasses of
org.apache.wicket.markup.html.form.FormComponent.

● Class Form comes with a callback method onSubmit which is invoked
when form is submitted.

public class LoginForm extends Form {

public final void onSubmit() {
...

}

● Now we gonna look at a classic example of form to sign in a user
with a username and password.

● Text felds elements are handled in Wicket with class TextField

● Example for a TextField:
Java
new TextField<String>(“username”,Model<String>.of(“Insert

username”));
HTML
Username: <input type="text" wicket:id="username"/>

TextField component

* The example code for the two versions of the form is available on GitHub under module
LoginForm and LoginFormRevisited.

https://github.com/bitstorm/Wicket-tutorial-examples
https://github.com/bitstorm/Wicket-tutorial-examples/tree/master/LoginForm
https://github.com/bitstorm/Wicket-tutorial-examples/tree/master/LoginFormRevisited

<html>
…
<div style="margin: auto; width: 40%" class="">
<form id="search" method="get" wicket:id="form">
<fieldset class="center">

<legend >Search</legend>
<p wicket:id="loginStatus" style=""></p>
Username:

<input wicket:id="username" type="text" id="username" />

Password:
<input wicket:id="password" type="password" id="password" />

<p>
 <input type="submit" name="login" value="login"/>
</p>

</fieldset>
</form>
</div>
…
</html>

Example form: the markup

Wicket comes with a specific component for password
fields.

4 components: a form, a
label, a text field and a
password field.

public class LoginForm extends Form {
private TextField usernameField;
private PasswordTextField passwordField;
private Label loginStatus;

public LoginForm(final String componentName) {
super(componentName);

usernameField = new TextField("username", new Model<String>(""));
passwordField = new PasswordTextField("password", new

 Model<String>(""));
loginStatus = new Label("loginStatus");

add(usernameField);
add(passwordField);
add(new Label("message", "Login"));
add(loginStatus);

}

public final void onSubmit() {
String username = usernameField.getDefaultModelObject();
String password = passwordField.getDefaultModelObject();

if((username.equals("Mario") && password.equals("Rossi")))
loginStatus.setDefaultModel(new Model<String>("Good!"));

else
loginStatus.setDefaultModel(new Model<String>("Username or password invalid!"));

}

Wicket comes with a specific
component for password fields.

onSubmit is triggered when form is submitted.

Example form: first version

● CompoundPropertyModel is a particular kind of model which uses
components ids to resolve properties on its model object.

public class Person {
 private String name;
 private String surname;
 private String address;
 private String email;
}

//Create a person named 'John Smith'
Person person = new Person("John", "Smith");
setDefaultModel(new
CompoundPropertyModel(person));
add(new Label("name"));
add(new Label("surname"));
add(new Label("address"));
add(new Label("email"));

Model CompoundPropertyModel

● This can save us a lot boilerplate code if we choose components
ids according to properties name:

Data model:

Display data model:

● CompoundPropertyModel can drastically improve the code of our
example form if we use the form itself as data object.

Example form: second version

● We just have to add to the form class the felds we need to use
inside onSubmit():
class LoginForm extends Form{
 private String username;
 private String password;
 private String loginStatus;

 public LoginForm(String id) {
 super(id);
 setDefaultModel(new CompoundPropertyModel(this));

 add(new TextField("username"));
 add(new PasswordTextField("password"));
 add(new Label("loginStatus"));
 }

 public final void onSubmit() {
 if(username.equals("test") && password.equals("test"))
 loginStatus = "Congratulations!";
 else
 loginStatus = "Wrong username or password !";
 }
}

The form itself is the model object!

Components ids and fields names
are the same.

Model has become completely
transparent to the developer.

More about forms and models

● Forms are a wide-ranging topic and can not be fully covered with
this presentation.

● There’s also much more to say about models, especially if you use
them in Wicket 8 with lambda support.

● For a full coverage of forms and models see the user guide:

https://wicket.apache.org/learn/#guide

https://wicket.apache.org/learn/#guide

Resource handling

Resource handling

● With “resource” we indicate both static resources (such as JS and CSS
fles) and dynamic resources (those who returns they value on the fly
[ex: a RSS]).

● From a technical point of view, in Wicket a resource is just an
implementation of interface org.apache.wicket.request.
resource.IResource.

● Working with dynamic resources is less frequent in Wicket and it
implies a custom implementation of IResource.

● On the contrary handling static resources is a very common task. With
Wicket we can specify not just the static resource to load, but also its
dependencies and its loading priority.

Static resources

● In general static resources are loaded from 3 possible sources:
- A generic fle from local flesystem
- A fle from classpath (via ClassLoader)
- An URL

● In Wicket resources are instantiated using a reference to them rather
than directly. In this way they can be lazy-loaded the frst time they
are requested.

● Resource references are instances of class org.apache.wicket.
request.resource.ResourceReference.

● Most of the time static resources are JS or CSS fles which can be
referred to as header items.

Header items

● As the name suggests, an header item is simply an element that is
placed inside the <head> tag of the page. In Wicket header items are
usually built from a resource reference and are instances of class
org.apache.wicket.markup.head.HeaderItem (for example
JavaScriptHeaderItem)

● A page or one of its component can add an header item overriding
its method renderHead:

class MyPanel extends Panel {

 public void renderHead(IHeaderResponse response) {
 response.render(JavaScriptHeaderItem.forUrl("https://code.jquery.com/"
 + "jquery.min.js"));
 response.render(JavaScriptHeaderItem.forScript("alert('page loaded!');"));
 }
}

https://code.jquery.com/

Ok, let’s recap….

Resources

 Static Resources

Header Items

Resources: ANY kind of resources. i.e. both dynamic
(RSS, dynamic PDF, etc…) and static (JS, CSS, pictures,
etc…)

Static Resources: usually loaded from files (JS, CSS,
pictures, etc…)

Header Items: those resources that must be placed in the
header section (aka <head> tag). JS, CSS, script
sections, etc...

Built-in Header Items and dependencies

● CssHeaderItem: for CSS content.
● JavaScriptHeaderItem: for JavaScript content.
● StringHeaderItem: render free text in the header section.

● As we said before, we can declare dependencies on header items and resources:

Url jqueyuiUrl = Url.parse("https://ajax.googleapis.com/ajax/libs/jqueryui/" +
 "1.10.2/jquery-ui.min.js");

UrlResourceReference jqueryuiRef = new UrlResourceReference(jqueyuiUrl){
 @Override
 public List<HeaderItem> getDependencies() {
 Application application = Application.get();
 ResourceReference jqueryRef = …;

 return Arrays.asList(JavaScriptHeaderItem.forReference(jqueryRef));
 }
};

JavaScriptReferenceHeaderItem javaScriptHeaderItem =
 JavaScriptHeaderItem.forReference(jqueryuiRef);

Priority Header Item

● PriorityHeaderItem: wraps another header item and ensures
that it will have the priority over the other items.

The item wrapped by PriorityHeaderItem will be contributed before any other
non-priority item, including its dependencies.

Url jqueyuiUrl = Url.parse("https://ajax.googleapis.com/ajax/libs/"
 + "jqueryui/1.10.2/jquery-ui.min.js");
UrlResourceReference jqueryuiRef = new
 UrlResourceReference(jqueyuiUrl);
JavaScriptReferenceHeaderItem javaScriptHeaderItem =
 JavaScriptHeaderItem.forReference(jqueryuiRef);

PriorityHeaderItem item = new
 PriorityHeaderItem(javaScriptHeaderItem);

https://ajax.googleapis.com/ajax/libs/

Header Items for JavaScript

● OnDomReadyHeaderItem: JavaScript code that will be executed after
the DOM has been built, but before external fles will be loaded.

 OnDomReadyHeaderItem item = new OnDomReadyHeaderItem(";alert('hello!');");

● OnLoadHeaderItem: execute JavaScript code after the whole page is
loaded.

 OnLoadHeaderItem item = new OnLoadHeaderItem(";alert('hello!');");

● OnEventHeaderItem: execute JavaScript code when a specifc event is
triggered.

OnEventHeaderItem item = new OnEventHeaderItem("elementId",
 "eventName", ";alert('Hello!');");

There are also header items meant to work with JavaScript events. In this
way we can execute our code only when a specifc event occurs.

Bundle resources

● To reduce the number of requests to the server, resources can be
aggregated in bundles. A resource bundle can be declared during
application initialization listing all the resources that compose it:

@Override
public void init()
{

 getResourceBundles()
 .addJavaScriptBundle(getClass(), "plugins-bundle.js",
 jqueryPlugin1, jqueryPlugin2, jqueryPlugin3
);

}

Now, when one of the resources included in the bundle is requested, the entire
bundle is served, i.e. the page will contain the JavaScript entry plugins-bundle.js
, which includes all the bundle resources.

AJAX support

“Transparent” AJAX

Wicket simplifes AJAX development controlling via Java the following
basic operations:

● Generate a page unique id for the DOM element of a component.

● Write a callback for an event triggered on the page or on a specifc
component (with AJAX behaviors).

● Refresh the HTML of a component.

● Execute JavaScript code as response to a specifc event.

For the frst three operations we won’t write a single
line of JavaScript!

Handle AJAX events

● Now we can “ajaxify” components adding AJAX behaviors. In Wicket a
behaviors are quite like plug-ins that can enrich a component with
new features.

● For example org.apache.wicket.ajax.AjaxEventBehavior provides the
means to handle an event on server side via AJAX:

Java Code HTML Template

Label label = new Label("label","Hello!");
label.setOutputMarkupId(true);

label.add(new AjaxEventBehavior("click") {
 @Override
 protected void onEvent(AjaxRequestTarget
 target) {
 //Do my stuff...
 }
});

<html>
<body>

 Message goes here

</body>
</html>

AjaxRequestTarget is the main entity for AJAX development.

Refresh HTML and add JavaScript to
response

● A common parameter for AJAX handler is
org.apache.wicket .ajax.AjaxRequestTarget, which can be used to
refresh component HTML:

protected void onEvent(AjaxRequestTarget
 target) {
 target.add(panel);
}

protected void onEvent(AjaxRequestTarget
 target) {
 target.appendJavaScript(";alert('hello!');");
 target.getHeaderResponse().render(headerItem);
}

● AjaxRequestTarget can be used also to enrich AJAX response with
JavaScript code and header items:

Built-in AJAX components and
behaviors

A number of ready-to-use components and behaviors are provided out
of the box:

● AjaxLink

● AjaxButton

● AjaxCheckBox

● AutoCompleteTextField

● AjaxEventBehavior

● AjaxFormSubmitBehavior

● AbstractAjaxTimerBehavior
● …. More examples at http://examples7x.wicket.apache.org/ajax/

http://examples7x.wicket.apache.org/ajax/

Java lambdas: a match made in
heaven

● Java 8 lambdas are quite suited for writing callback code, which is
what we do to handle AJAX events.

● With Wicket 8 an AJAX click handler can be written leveraging lambdas
in the following way:

AjaxEventBehavior.onEvent("click", target -> target.add(component));

Testing with Wicket

Test in isolation

● Test Driven Development (and unit testing) has become a fundamental
activity in our everyday-job. Wicket ofers a rich set of helper classes
that allows us to test our applications in isolation using just JUnit.

● With “just JUnit” we mean:

1) We don’t need to have a running server

2) We don’t need to run tests for a specifc browser (like we do with
Karma)

3) No additional library required, just Wicket and JUnit (no need of
browser automation tools like Selenium)

Test in isolation

public class TestHomePage {
 private WicketTester tester;

 @Before
 public void setUp() {
 tester = new WicketTester(new WicketApplication());
 }

 @Test
 public void testHomePageLink() {
 //start and render the test page
 tester.startPage(HomePage.class);
 //assert rendered page class
 tester.assertRenderedPage(HomePage.class);
 //move to an application link
 tester.executeUrl("./foo/bar");
 //test expected page for link
 tester.assertRenderedPage(AnotherHomePage.class);
 }
}

● The central class in a Wicket testing is org.apache.wicket.util.tester.WicketTester.
This utility class provides a set of methods to render a component, click links,
check page content, etc...

Testing the response

● WicketTester allows us to access to the last response generated during
testing with method getLastResponse. Utility class Mock-
HttpServletResponse is returned to extract informations from mocked
request.

String responseContent = tester.getLastResponse().getDocument();

tester.assertContains("regExp");

● Resulting markup can be tested at tag-level with TagTester:

<html xmlns:wicket="http://wicket.apache.org">
 <head>
 <meta charset="utf-8" />
 <title></title>
 </head>
 <body>

 <div class="myClass"></div>
 </body>
</html>

String responseContent = tester.getLastResponse().getDocument();
//look for a tag with 'class="myClass"'
TagTester tagTester = TagTester.createTagByAttribute(responseTxt,
 "class", "myClass");

assertEquals("span", tagTester.getName());
List<TagTester> tagTesterList = TagTester.createTagsByAttribute(responseTxt,
 "class", "myClass", false);

assertEquals(2, tagTesterList.size());

Response content:

JUnit code:

Testing the response

● AJAX components can be tested as well “triggering” the JavaScript
event they handle:

Page Code

Label label = new Label("label", "Hello World!");
Label otherLabel = new Label("otherLabel", "hola!");
label.setOutputMarkupId(true);

label.add(new AjaxEventBehavior("click") {
 @Override
 protected void onEvent(AjaxRequestTarget target) {
 target.add(otherLabel);
 }
});

Test Code

//simulate an AJAX "click" event
tester.executeAjaxEvent("label", "click");

//test other assertions…

Testing AJAX events

● The AJAX response can be tested with WicketTester to ensure that a specifc
component has been added (i.e. we want to refresh its markup):

Page Code

Label label = new Label("label", "Hello World!");
Label otherLabel = new Label("otherLabel", "hola!");
label.setOutputMarkupId(true);

label.add(new AjaxEventBehavior("click") {
 @Override
 protected void onEvent(AjaxRequestTarget target) {
 target.add(otherLabel);
 }
});

Test Code

//simulate an AJAX "click" event
tester.executeAjaxEvent("label", "click");
//test if AjaxRequestTarget contains a component (using its path)
tester.assertComponentOnAjaxResponse("otherLabel");

Testing AJAX response

● AJAX behaviors can also be tested in isolation, relying only on
WicketTester:

Test Code

AjaxFormComponentUpdatingBehavior ajaxBehavior =
 new AjaxFormComponentUpdatingBehavior("change"){
 @Override
 protected void onUpdate(AjaxRequestTarget target) {
 //...
 }
};

component.add(ajaxBehavior);

//execute AJAX behavior, i.e. onUpdate will be invoked
tester.executeBehavior(ajaxBehavior);

Testing AJAX behaviors

WicketTester ofers many more utilities for unit testing:

Other test goodies

● Check component status (assertEnabled,
assertDisabled, assetVisible, assertInvisible)

● Check component’s model value
(assertModelValue)

● Test forms with FormTester:
FormTester formTester = tester.newFormTester("form");
//set credentials
formTester.setValue("username", username);
formTester.setValue("password", password);
//submit form
formTester.submit();

● …

Summary and references

● Learn more and keep in contact with us!
– Main site: http://wicket.apache.org/
– Tweeter account: https://twitter.com/apache_wicket/
– User guide: http://wicket.apache.org/learn/#guide
– User guide live examples: https://wicket-guide.herokuapp.com/

● We had a quick “journey” through the life of Wicket.
● As for any other Open Source project, the health of its community is

fundamental.
● We have seen some of the most appealing features, still there is lot

more to discover!

http://wicket.apache.org/
https://twitter.com/apache_wicket/
http://wicket.apache.org/learn/#guide
https://wicket-guide.herokuapp.com/

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

